Workshop on Vortices in Superfluids and Superconductors Oulu 4.-8.1.2003

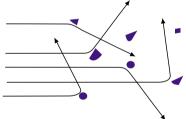
INHOMOGENEOUS IMPURITY DISTRIBUTION IN FERMI SUPERFLUIDS

http://boojum.hut.fi/research/theory/aerogel.html

Erkki Thuneberg*,† and Risto Hänninen†

*Department of Physical Sciences, University of Oulu †Low Temperature Laboratory, Helsinki University of Technology

Content

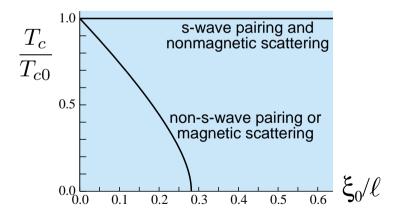

Impurities in Fermi superfluids
quasiclassical theory
impurity averaging
Homogeneous distribution of impurities
A model of inhomogeneous impurity distribution
Application to superfluid ³He in aerogel

Impurities in metals

Parameters:

- scattering cross section σ
- density of impurities n
- mean free path for quasiparticles $\ell=1/n\sigma$

Scattering causes electrical resistance in normal metals


Superconductors (usual case)

- T_c not changed (Anderson theorem)
- Ginzburg-Landau parameter increases

but

- magnetic impurities in usual superconductors, or
- usual impurities in unconventional superconductors(p, d, ... wave pairing)

 \Rightarrow

(Abrikosov-Gorkov 1961)

Quasiclassical scattering theory

parameters:

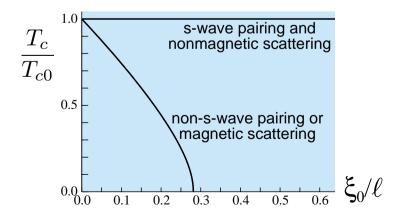
- Fermi wave length λ_F
- coherence length $\xi_0 = \frac{\hbar v_F}{2\pi k_B T_c}$
- scattering cross section σ
- density of impurities n
- mean free path $\ell=1/n\sigma$

Assumption:

$$\lambda_F, \sqrt{\sigma} \ll \xi_0, \ell \tag{1}$$

Take leading terms, ignore terms that are smaller by factors λ_F/ξ_0 , etc.

Technical tool: take an average over the locations of the impurities.


However, due to assumptions (1), this implies that all fluctuations in the impurity density are lost.

 \Rightarrow

Instead of true discrete impurities there is a continuous scattering medium.

 \Rightarrow

"Homogeneous scattering model" (HSM)

Quasiclassical equations

4x4 matrix Green's function $\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m)$:

$$[i\epsilon_{m}\hat{\tau}_{3} - \hat{\nu} - \hat{\Delta} - \hat{\rho}, \hat{g}] + i\hbar \mathbf{v}_{F} \cdot \nabla_{\mathbf{r}}\hat{g} = 0$$

$$\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_{m})\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_{m}) = -\pi^{2}$$

$$\hat{\rho}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_{m}) = n(\mathbf{r})\hat{t}(\hat{\mathbf{k}}, \hat{\mathbf{k}}, \mathbf{r}, \epsilon_{m}).$$

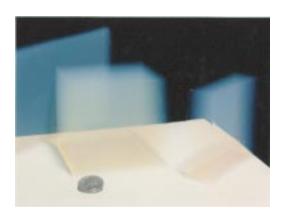
Equation for the scattering matrix $\hat{t}(\hat{\mathbf{k}},\hat{\mathbf{k}}',\epsilon_m)$

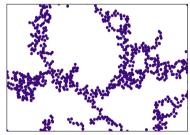
$$\widehat{t}(\widehat{\mathbf{k}}, \widehat{\mathbf{k}}', \mathbf{r}, \epsilon_m) = \widehat{v}(\widehat{\mathbf{k}}, \widehat{\mathbf{k}}') + N(0) \langle \widehat{v}(\widehat{\mathbf{k}}, \widehat{\mathbf{k}}'') \widehat{g}(\widehat{\mathbf{k}}'', \mathbf{r}, \epsilon_m) \widehat{t}(\widehat{\mathbf{k}}'', \widehat{\mathbf{k}}', \mathbf{r}, \epsilon_m) \rangle_{\widehat{\mathbf{k}}''}.$$

Energy functional

$$\Omega = \int d^3r \left[\frac{1}{V_{BCS}} \langle |\Delta(\hat{\mathbf{k}}, \mathbf{r})|^2 \rangle_{\hat{\mathbf{k}}} + \frac{1}{2} N(0) T \sum_{\epsilon_m} \int_0^{\Delta} \frac{d\Delta}{\Delta} \langle \text{Tr}_4[\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m) \hat{\Delta}(\hat{\mathbf{k}}, \mathbf{r})] \rangle_{\hat{\mathbf{k}}} \right]$$

+ terms arising from Fermi-liquid corrections $\hat{\nu}$.


Need a better theory?


- in high T_c superconductors $\sqrt{\sigma}/\xi_0$ is not negligible. \Rightarrow
- Fluctuations of the impurity density are important. (Franz, Kallin, Berlinsky, and Salkola 1997)
- superfluid ³He in aerogel

Impure superfluid ³He

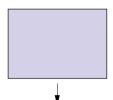
³He is a naturally pure substance

Impurity can be introduced by porous aerogel

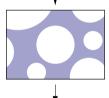
- strands of SiO₂
- typically 98% empty
- small angle x-ray scattering \Rightarrow homogeneous on scale above \approx 100 nm

Compare that to

 $\xi_0 = 16...74 \text{ nm},$

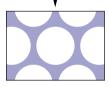

depending on pressure.

Experiments:


HSM has qualitative success, but insufficient quantitatively.

Models

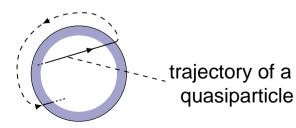
Use quasiclassical theory with a location dependent impurity density $n(\mathbf{r})$.



Homogeneous scattering model

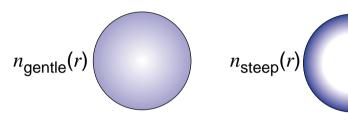
Random voids

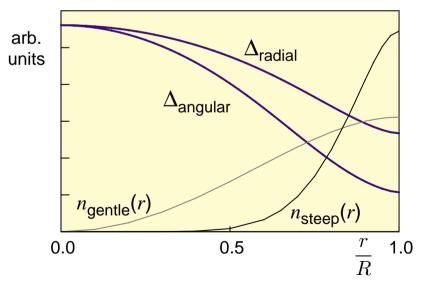
- not simple enough to calculate


Periodic voids

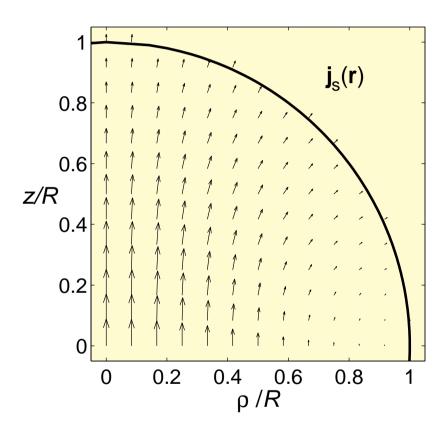
- not simple enough to calculate

Isotropic inhomogeneous scattering

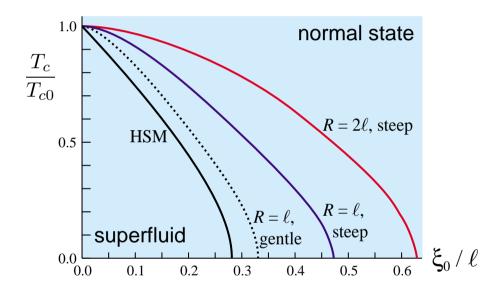

- spherical unit-cell approximation
- (quasi)periodic boundary condition


Isotropic inhomogeneous scattering model (IISM)

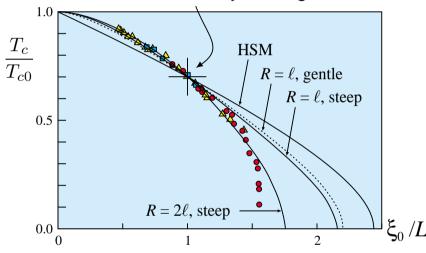
parameters:


R, radius of the unit cell n(r), scattering profile ℓ , average mean free path

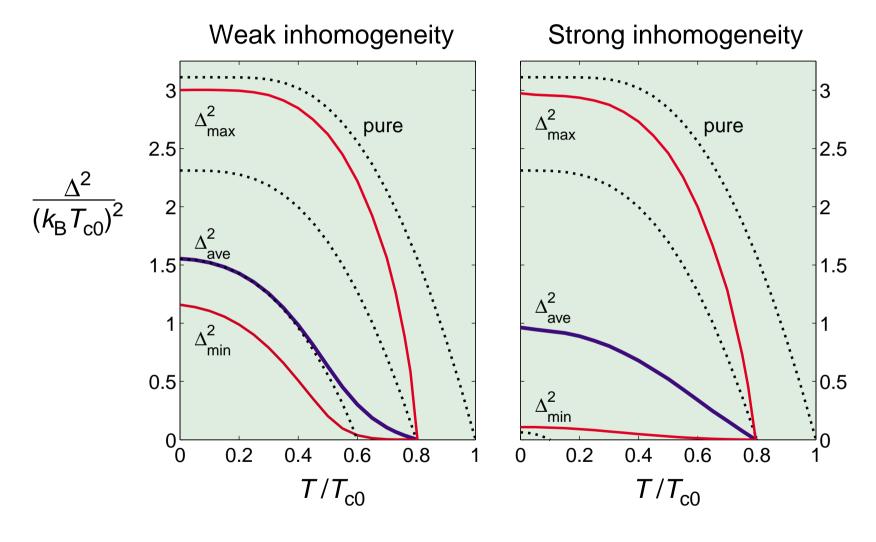
Order parameter in distorted B phase



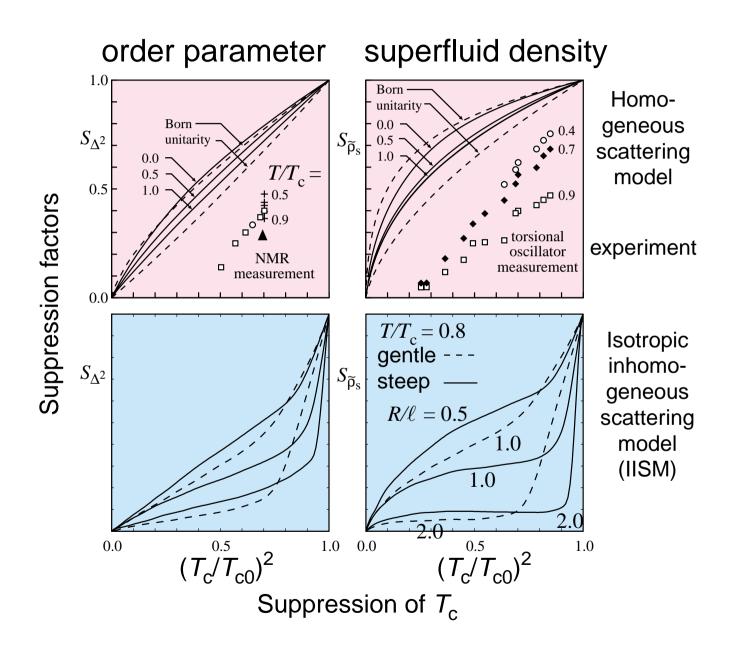
Supercurrent


 \mathbf{j}_{S} in cylindrical coordinates ρ, ϕ, z .

Transition temperature


Experiments (vary pressure)

data made to coincide here by scaling the *x*-axis



Porto et al (1995), Sprague et al (1995), Matsumoto et al (1997)

Temperature dependence

Suppression of

Discussion

The IISM gives better fit to experiment than HSM.

The optimal radius of the unit cell $R \approx 140$ nm is on the same order of magnitude than the aerogel correlation length ≈ 84 nm.

No perfect fit to experiments

- possible reason: IISM has only one length scale ${\cal R}.$

Conclusions

Quasiclassical theory: inhomogeneous scattering modelled by $n(\mathbf{r})$.

Isotropic inhomogeneous scattering model (IISM):

- the simplest model of inhomogeneous scattering that reduces to homogeneous medium on a large scale
- computationally much heavier than HSM
- ³He in aerogel: IISM clearly better than HSM, but still not perfect
- how to calculate vortex states?
- application to other superfluids?

Links: http://boojum.hut.fi/research/theory/aerogel.html