Workshop on Vortices in Superfluids and Superconductors Oulu 4.-8.1.2003 # INHOMOGENEOUS IMPURITY DISTRIBUTION IN FERMI SUPERFLUIDS http://boojum.hut.fi/research/theory/aerogel.html Erkki Thuneberg*,† and Risto Hänninen† *Department of Physical Sciences, University of Oulu †Low Temperature Laboratory, Helsinki University of Technology #### Content Impurities in Fermi superfluids quasiclassical theory impurity averaging Homogeneous distribution of impurities A model of inhomogeneous impurity distribution Application to superfluid ³He in aerogel ## Impurities in metals #### Parameters: - scattering cross section σ - density of impurities n - mean free path for quasiparticles $\ell=1/n\sigma$ Scattering causes electrical resistance in normal metals # Superconductors (usual case) - T_c not changed (Anderson theorem) - Ginzburg-Landau parameter increases but - magnetic impurities in usual superconductors, or - usual impurities in unconventional superconductors(p, d, ... wave pairing) \Rightarrow (Abrikosov-Gorkov 1961) # Quasiclassical scattering theory ### parameters: - Fermi wave length λ_F - coherence length $\xi_0 = \frac{\hbar v_F}{2\pi k_B T_c}$ - scattering cross section σ - density of impurities n - mean free path $\ell=1/n\sigma$ ### Assumption: $$\lambda_F, \sqrt{\sigma} \ll \xi_0, \ell \tag{1}$$ Take leading terms, ignore terms that are smaller by factors λ_F/ξ_0 , etc. Technical tool: take an average over the locations of the impurities. However, due to assumptions (1), this implies that all fluctuations in the impurity density are lost. \Rightarrow Instead of true discrete impurities there is a continuous scattering medium. \Rightarrow "Homogeneous scattering model" (HSM) ## **Quasiclassical equations** 4x4 matrix Green's function $\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m)$: $$[i\epsilon_{m}\hat{\tau}_{3} - \hat{\nu} - \hat{\Delta} - \hat{\rho}, \hat{g}] + i\hbar \mathbf{v}_{F} \cdot \nabla_{\mathbf{r}}\hat{g} = 0$$ $$\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_{m})\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_{m}) = -\pi^{2}$$ $$\hat{\rho}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_{m}) = n(\mathbf{r})\hat{t}(\hat{\mathbf{k}}, \hat{\mathbf{k}}, \mathbf{r}, \epsilon_{m}).$$ Equation for the scattering matrix $\hat{t}(\hat{\mathbf{k}},\hat{\mathbf{k}}',\epsilon_m)$ $$\widehat{t}(\widehat{\mathbf{k}}, \widehat{\mathbf{k}}', \mathbf{r}, \epsilon_m) = \widehat{v}(\widehat{\mathbf{k}}, \widehat{\mathbf{k}}') + N(0) \langle \widehat{v}(\widehat{\mathbf{k}}, \widehat{\mathbf{k}}'') \widehat{g}(\widehat{\mathbf{k}}'', \mathbf{r}, \epsilon_m) \widehat{t}(\widehat{\mathbf{k}}'', \widehat{\mathbf{k}}', \mathbf{r}, \epsilon_m) \rangle_{\widehat{\mathbf{k}}''}.$$ **Energy functional** $$\Omega = \int d^3r \left[\frac{1}{V_{BCS}} \langle |\Delta(\hat{\mathbf{k}}, \mathbf{r})|^2 \rangle_{\hat{\mathbf{k}}} + \frac{1}{2} N(0) T \sum_{\epsilon_m} \int_0^{\Delta} \frac{d\Delta}{\Delta} \langle \text{Tr}_4[\hat{g}(\hat{\mathbf{k}}, \mathbf{r}, \epsilon_m) \hat{\Delta}(\hat{\mathbf{k}}, \mathbf{r})] \rangle_{\hat{\mathbf{k}}} \right]$$ + terms arising from Fermi-liquid corrections $\hat{\nu}$. ## Need a better theory? - in high T_c superconductors $\sqrt{\sigma}/\xi_0$ is not negligible. \Rightarrow - Fluctuations of the impurity density are important. (Franz, Kallin, Berlinsky, and Salkola 1997) - superfluid ³He in aerogel # Impure superfluid ³He ³He is a naturally pure substance Impurity can be introduced by porous aerogel - strands of SiO₂ - typically 98% empty - small angle x-ray scattering \Rightarrow homogeneous on scale above \approx 100 nm Compare that to $\xi_0 = 16...74 \text{ nm},$ depending on pressure. Experiments: HSM has qualitative success, but insufficient quantitatively. #### Models Use quasiclassical theory with a location dependent impurity density $n(\mathbf{r})$. Homogeneous scattering model Random voids - not simple enough to calculate Periodic voids - not simple enough to calculate Isotropic inhomogeneous scattering - spherical unit-cell approximation - (quasi)periodic boundary condition # Isotropic inhomogeneous scattering model (IISM) parameters: R, radius of the unit cell n(r), scattering profile ℓ , average mean free path #### Order parameter in distorted B phase # **Supercurrent** \mathbf{j}_{S} in cylindrical coordinates ρ, ϕ, z . # **Transition temperature** Experiments (vary pressure) data made to coincide here by scaling the *x*-axis Porto et al (1995), Sprague et al (1995), Matsumoto et al (1997) # Temperature dependence # **Suppression of** #### Discussion The IISM gives better fit to experiment than HSM. The optimal radius of the unit cell $R \approx 140$ nm is on the same order of magnitude than the aerogel correlation length ≈ 84 nm. No perfect fit to experiments - possible reason: IISM has only one length scale ${\cal R}.$ #### **Conclusions** Quasiclassical theory: inhomogeneous scattering modelled by $n(\mathbf{r})$. Isotropic inhomogeneous scattering model (IISM): - the simplest model of inhomogeneous scattering that reduces to homogeneous medium on a large scale - computationally much heavier than HSM - ³He in aerogel: IISM clearly better than HSM, but still not perfect - how to calculate vortex states? - application to other superfluids? Links: http://boojum.hut.fi/research/theory/aerogel.html