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Impurities in metals

but

Parameters:

- scattering cross section o - magnetic impurities in usual

- density of impurities n superconductors, or

- mean free path for

quasiparticles £ = 1/no - usual impurities in
unconventional su-p_erconductors

Scattering causes electrical (p, d, ... wave pairing)

resistance in hormal metals

) )

\>. \ d Tc 10 s-wave pairing and

nonmagnetic scattering

S

Superconductors (usual case) o

non-s-wave pairing or
magnetic scattering

- T not changed (Anderson
theorem)
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- Ginzburg-Landau parameter (Abrikosov-Gorkov 1961)
increases



Quasiclassical scattering
theory

parameters:

Fermi wave length Agp
coherence length &y = %

scattering cross section o
density of impurities n
mean free path £ =1/no

Assumption:

A, Vo K &g, L (1)

Take leading terms, ignore terms
that are smaller by factors Ag/&p,
etc.

Technical tool: take an average
over the locations of the
impurities.

However, due to assumptions
(1), this implies that all
fluctuations in the impurity
density are lost.

=

Instead of true discrete impurities
there is a continuous scattering
medium.

=

"Homogeneous scattering
model” (HSM)
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Quasiclassical equations

4x4 matrix Green's function g(k,r, em):
[iem?S—ﬁ—A—ﬁ,ﬁ] + ihve - Vg =10
g(Ra r, Gm)g(R, r, €m> = —7'('2

p(k,r,em) = n(r)i(k, k,r,em).
Equation for the scattering matrix #(k, kK, em)
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Energy functional
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+ terms arising from Fermi-liquid corrections v.
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Need a better theory?

- in high T, superconductors /o /&g is not negligible.

=
Fluctuations of the impurity density are important.

(Franz, Kallin, Berlinsky, and Salkola 1997)

- superfluid 3He in aerogel



Impure superfluid 3He

3He is a naturally pure substance

Impurity can be introduced by
porous aerogel

Compare that to

o =16...74 nm,
depending on pressure.

Experiments:
HSM has qualitative success, but
insufficient quantitatively.

- strands of SiO»

- typically 98% empty

- small angle x-ray scattering =
homogeneous on scale above

~ 100 nm



Models

Use quasiclassical theory with a location
dependent impurity density n(r).

Homogeneous scattering model

Random voids
- not simple enough to calculate

Periodic voids
- not simple enough to calculate

|sotropic inhomogeneous scattering
- spherical unit-cell approximation
- (quasi)periodic boundary condition

-~

-.__trajectory of a
guasiparticle

Isotropic inhomogeneous
scattering model (IISM)

R, radius of the unit cell
parameters: { n(r), scattering profile
¢, average mean free path

ngentle(r) nsteep(r)

Order parameter in distorted B phase
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Supercurrent
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Js in cylindrical coordinates p, ¢, z.



Transition temperature

Experiments (vary pressure)

data made to coincide here by scaling the x-axis
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T, 7. [ O > HSM
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Porto et al (1995), Sprague et al
(1995), Matsumoto et al (1997)



Temperature dependence

Weak inhomogeneity Strong inhomogeneity
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Suppression factors
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Discussion
The IISM gives better fit to experiment than HSM.

The optimal radius of the unit cell R~ 140 nm is on the same order of
magnitude than the aerogel correlation length ~ 84 nm.

No perfect fit to experiments
- possible reason: IISM has only one length scale R.



Conclusions
Quasiclassical theory: inhomogeneous scattering modelled by n(r).
Isotropic inhomogeneous scattering model (IISM):

- the simplest model of inhomogeneous scattering that reduces to
homogeneous medium on a large scale

computationally much heavier than HSM

3He in aerogel: IISM clearly better than HSM, but still not perfect

how to calculate vortex states?

application to other superfluids?

Links: http://boojum.hut.fi/research /theory/aerogel . html
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