# $\pi$ states and textural effects in superfluid $^3{\rm He}$ weak links



#### Janne Viljas

Low Temperature Laboratory Helsinki University of Technology



#### In collaboration with:

Erkki Thuneberg, University of Oulu

http://boojum.hut.fi/research/theory/jos.html

Janne Viljas

LTL 🖄, HUT 🏈

## Outline

- weak links in <sup>3</sup>He-B
- theoretical models for " $\pi$  states"
  - quasiclassical pinhole model
  - GL calculation of a large aperture
  - textural effects in aperture arrays
- summary

## Weak link in superfluid <sup>3</sup>He-B

 $p_z \dot{y}$ 

• triplet pairing

$$\Delta_{\mu}^{t} = \mathbf{A}_{\mu i} \hat{k}_{i}, \, \mu, \, i = x, \, y, \, z$$

• order parameter

ŷ

 $p_{x}$ 

*x* ⁄

$$\begin{array}{c}
-|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle \rightarrow \\
i|\uparrow\uparrow\rangle + i|\downarrow\downarrow\rangle \rightarrow \\
|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \rightarrow \\
\end{array}
\begin{bmatrix}
A_{xx} & A_{xy} & A_{xz} \\
A_{yx} & A_{yy} & A_{yz} \\
A_{zx} & A_{zy} & A_{zz}
\end{bmatrix}$$

ŷ

 $p_y$ 

*x* ⁄

- $A_{\mu i} = \Delta R_{\mu i}(\hat{\mathbf{n}}, \theta_0) \exp(i\phi)$
- **n** forms textures



Janne Viljas

x

LTL 🖄, HUT 🏈

Maratea, September 2002

#### Berkeley experiments [Marchenkov et al., PRL 83, 3860 (1999)]



Janne Viljas

LTL 🖄, HUT 🏈

#### Paris experiments [Avenel et al., Physica B 280, 130 (2000)]



LTL 🖉, HUT 《

#### Josephson currents in a small weak link

![](_page_5_Figure_2.jpeg)

singlet s wave pinhole:
 [Kulik & Omel'yanchuk (1977)]

 $J_{s}(\phi)=f(\phi)$ 

triplet *p* wave: ↑↑ and ↓↓ condensates
 [Yip, PRL 83, 3864 (1999)]

$$J_{s}(\phi) = \frac{1}{2} \left\langle f(\phi + \vartheta_{\hat{\mathbf{k}}}) + f(\phi - \vartheta_{\hat{\mathbf{k}}}) \right\rangle_{\hat{\mathbf{k}}}$$
$$\cos \vartheta_{\hat{\mathbf{k}}} = [R_{\mu i}^{L} R_{\mu j}^{R}] \hat{k}_{i} \hat{k}_{j}$$

Janne Viljas

LTL 🖉, HUT 🏈

#### $\pi$ periodicity and " $\pi$ states"

• for each  $\hat{\mathbf{k}}$ , expand  $f(\phi \pm \vartheta) = \sum_{n=1}^{\infty} f^{(n)} \sin[n(\phi \pm \vartheta)]$ 

![](_page_6_Figure_3.jpeg)

- average over  $\hat{\mathbf{k}}$  to get  $J_{s}(\phi) = \sum_{n=1}^{\infty} J_{c}^{(n)} \sin(n\phi)$
- $\hat{\mathbf{n}}^{L,R}$  and thus  $J_c^{(n)}$  controllable with magnetic field:  $F_{SH} \propto -(\mathbf{H} \cdot R\hat{\mathbf{s}})^2$

#### **GL** simulation of large aperture

- for  $T \ll T_c$  holes with  $W \approx 100$  nm not good "pinholes"
- self-consistent calculation for 3D hole or 2D slit on  $\xi_{GL}$ scale

![](_page_7_Figure_4.jpeg)

LTL 🖄, HUT 🌾

Ginzburg-Landau energy density

$$\begin{split} f(A, \nabla A) &= \\ &- \alpha \operatorname{Tr}(AA^{\mathrm{T}*}) + \beta_1 |\operatorname{Tr}(AA^{\mathrm{T}})|^2 + \beta_2 [\operatorname{Tr}(AA^{\mathrm{T}*})]^2 \\ &+ \beta_3 \operatorname{Tr}(AA^{\mathrm{T}}A^*\!A^{\mathrm{T}*}) + \beta_4 \operatorname{Tr}(AA^{\mathrm{T}*}\!AA^{\mathrm{T}*}) + \beta_5 \operatorname{Tr}(AA^{\mathrm{T}*}\!A^*\!A^{\mathrm{T}}) \\ &+ K \left[ (\gamma - 2)\partial_i A^*_{\mu i} \partial_j A_{\mu j} + \partial_i A^*_{\mu j} \partial_i A_{\mu j} + \partial_i A^*_{\mu j} \partial_j A_{\mu i} \right] \end{split}$$

Conserved currents ( $\xi_{GL}(T) \ll \xi_D$ )

$$\mathbf{j}_{s} = \frac{2m_{3}}{\hbar} \left( +iA_{\mu i} \frac{\partial f}{\partial \nabla A_{\mu i}} + c.c. \right)$$
$$\mathbf{j}_{\alpha}^{spin} = +\epsilon_{\alpha\mu\nu}A_{\nu i} \frac{\partial f}{\partial \nabla A_{\mu i}} + c.c., \qquad \alpha = x, y, z$$

### " $\pi$ states" (3D hole)

- pinhole: " $\pi$  states" only for  $\hat{\mathbf{n}}^L \neq \hat{\mathbf{n}}^R$
- large hole: also for  $\hat{\mathbf{n}}^L = \hat{\mathbf{n}}^R$  [Viljas & Thuneberg, PRL 83, 3868 (1999)]

![](_page_9_Figure_4.jpeg)

•  $\pi$  branch not accessible via phase slip?

![](_page_9_Picture_6.jpeg)

 order parameter on *π* branch: trapped double-core vortex

#### Wide and narrow 2D slits

![](_page_10_Figure_2.jpeg)

Janne Viljas

LTL 🖉, HUT 🏈

#### "Anisotextural" effect

- length scale >  $\xi_D \approx 10 \mu \text{m} \gg \xi_0$
- surface-dipole energy  $\propto -(\hat{\mathbf{n}} \cdot \hat{\mathbf{s}})^2$  and coupling  $F_J(\phi, \hat{\mathbf{n}}^L, \hat{\mathbf{n}}^R)$

![](_page_11_Figure_4.jpeg)

• weak link couples phase and spin-orbit degrees of freedom

Maratea, September 2002

### **Aperture array**

• a pinned textrure may bend

![](_page_12_Figure_3.jpeg)

![](_page_12_Figure_4.jpeg)

• minimize coupling + bending energy

$$F_J(\phi, \hat{\mathbf{n}}^L, \hat{\mathbf{n}}^R) = -E_c(\hat{\mathbf{n}}^L, \hat{\mathbf{n}}^R) \cos \phi$$
$$F_{\text{rig}}(\hat{\mathbf{n}}^L, \hat{\mathbf{n}}^R) = F_G(\hat{\mathbf{n}}^L) + F_G(\hat{\mathbf{n}}^R)$$

• transition at 
$$\phi = \pm \pi/2$$
 where  $\cos \phi = 0$ 

![](_page_12_Figure_8.jpeg)

LTL 🖉, HUT 《

#### Maratea, September 2002

- estimates for pinholes in diffusive wall [Viljas & Thuneberg, PRB 65, 064530 (2002)]
- $F_G \sim R$  and  $F_J \sim \kappa R^2$

![](_page_13_Figure_3.jpeg)

•  $T = 0.4T_c$ ,  $R\kappa \gtrsim 0.5\mu$ m

![](_page_13_Figure_5.jpeg)

Janne Viljas

LTL 🖉, HUT 🏈

## Summary

• pinhole model reasonable for small apertures

$$F_J(\phi) = -E_c^{(1)}\cos\phi - E_c^{(2)}\cos 2\phi - \cdots$$

- modifications necessary for
  - large ( $W, D \gtrsim \xi_{GL}$ ) apertures
  - hole arrays  $\implies$  anisotextural effects
- more experiments needed to identify these effects