Superfluids Under Rotation Jerusalem, Israel, 15.-19.4.2007

TWISTED VORTEX STATE

Erkki Thuneberg
Department of Physical Sciences, University of Oulu

in collaboration with
R. Hänninen, M. Tsubota,
J. Kopu, V.B. Eltsov, A.P. Finne, and M. Krusius

Content

1) Does the twisted state exist at all?

Hydrodynamic theory

- uniform twist
- linear theory of nonuniform twist

2) Generation of twisted vortex states

Numerical simulations
3) Observation in superfluid ${ }^{3} \mathrm{He}$

Twisted vortex states in classical fluids

Figure: http://www.amc.edu.au/research/areas/cavitation/projects/

Stability of a polygon of helical vortices (Okulov 2004)

Rotating superfluid

Equilibrium vortex state

Previous literature: Hall (1958), Andronikashvili et al (1961), Glaberson et al (1974), Sonin (1987), Donnelly (1991)...
\rightarrow no mention of twisted vortices!
Taylor-Proudman theorem: "Any slow motion in rotating fluid is columnar"

1) Does the twisted state exist?

Hydrodynamic equations

Superfluid velocity $\boldsymbol{v}_{\mathrm{s}}$

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \boldsymbol{v}_{\mathrm{s}}=0 \quad \text { except at vortex lines } \\
& \nabla \cdot \boldsymbol{v}_{\mathrm{s}}=0
\end{aligned}
$$

\Rightarrow Vortex lines fully determine $\boldsymbol{v}_{s}(\boldsymbol{r}, t)$.

Line velocity $\boldsymbol{v}_{\mathrm{L}}$

$$
\boldsymbol{v}_{\mathrm{L}}=\boldsymbol{v}_{\mathrm{S}}
$$

Add mutual friction

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{L}}=\boldsymbol{v}_{\mathrm{S}}+\alpha \hat{\boldsymbol{l}} \times\left(\boldsymbol{v}_{\mathrm{n}}-\boldsymbol{v}_{\mathrm{S}}\right)-\alpha^{\prime} \hat{\boldsymbol{l}} \times\left[\hat{\boldsymbol{l}} \times\left(\boldsymbol{v}_{\mathrm{n}}-\boldsymbol{v}_{\mathrm{S}}\right)\right] \tag{1}
\end{equation*}
$$

Continuum model of vorticity

(Hall and Vinen 1956)
$\boldsymbol{v}_{\mathrm{S}}=\left\langle\boldsymbol{v}_{\mathrm{s}}^{\text {local }}\right\rangle$

$$
\begin{gathered}
\nabla \times \boldsymbol{v}_{\mathrm{s}}=\boldsymbol{\omega} \\
\nabla \cdot \boldsymbol{v}_{\mathrm{S}}=0
\end{gathered}
$$

Line velocity $\boldsymbol{v}_{\mathrm{L}}$

$$
\begin{equation*}
\boldsymbol{v}_{\mathrm{L}}=\tilde{\boldsymbol{v}}_{\mathrm{S}}+\alpha \hat{\boldsymbol{l}} \times\left(\tilde{\boldsymbol{v}}_{\mathrm{n}}-\boldsymbol{v}_{\mathrm{S}}\right)-\alpha^{\prime} \hat{\boldsymbol{l}} \times\left[\hat{\boldsymbol{l}} \times\left(\boldsymbol{v}_{\mathrm{n}}-\tilde{\boldsymbol{v}}_{\mathrm{S}}\right)\right] \tag{2}
\end{equation*}
$$

where $\tilde{\boldsymbol{v}}_{\mathrm{S}}=\boldsymbol{v}_{\mathrm{S}}+\nu \nabla \times \hat{\boldsymbol{\omega}}, \nu=(\kappa / 4 \pi) \ln (b / a)$.

Alternatively, one can use equation of motion for $\boldsymbol{v}_{\mathrm{s}}$:

$$
\frac{\partial \boldsymbol{v}_{s}}{\partial t}=\boldsymbol{v}_{s} \times \boldsymbol{\omega}+\nu(\boldsymbol{\omega} \cdot \nabla) \hat{\boldsymbol{\omega}}+\nabla \phi
$$

Uniformly twisted vortex state

Most symmetric state [cylindrical coordinates (r, ϕ, z)]

$$
\boldsymbol{v}_{s}=v_{\phi}(r) \hat{\phi}+v_{z}(r) \hat{\boldsymbol{z}}
$$

\Rightarrow vorticity

$$
\omega=\frac{1}{2} \nabla \times \boldsymbol{v}_{s}=\frac{1}{2}\left[-v_{z}^{\prime} \hat{\phi}+\left(\frac{v_{\phi}}{r}+v_{\phi}^{\prime}\right) \hat{z}\right]
$$

Calculate vortex line velocity from (2). For a stationary state the radial velocity must vanish. This implies

$$
\left(\Omega r-v_{\phi}\right)\left(\frac{v_{\phi}}{r}+\frac{d v_{\phi}}{d r}\right)-v_{z} \frac{d v_{z}}{d r}+\frac{\nu}{|\omega| r}\left(\frac{d v_{z}}{d r}\right)^{2}=0
$$

This implies that the helical vortices rotate together with the normal fluid, $\boldsymbol{v}_{L}=\boldsymbol{v}_{n}=\boldsymbol{\Omega} \times \boldsymbol{r}$.
\Rightarrow There exists a family of stationary, uniformly twisted states.

In a finite cylinder the total axial current must vanish,

$$
\begin{equation*}
\int_{0}^{R} d r r v_{z}=0 \tag{3}
\end{equation*}
$$

The functions $v_{z}(r), v_{\phi}(r)$ and the radial displacement of the vortices compared to
 equilibrium state, $\epsilon(r)$, are sketched in the figure.

The simplest case is helical vortices with a wave vector $Q(r)=$ constant. This has

$$
\begin{align*}
& v_{\phi}(r)=\frac{\left(\Omega+Q v_{0}\right) r}{1+Q^{2} r^{2}} \\
& v_{z}(r)=\frac{v_{0}-Q \Omega r^{2}}{1+Q^{2} r^{2}} \tag{4}
\end{align*}
$$

Linearized hydrodynamics

Assume general velocity with circular symmetry

$$
\boldsymbol{v}_{s}=v_{r}(r, z, t) \hat{\boldsymbol{r}}+v_{\phi}(r, z, t) \hat{\phi}+v_{z}(r, z, t) \hat{z}
$$

Assume small deviation from rotating equilibrium.
\Rightarrow waves of the form

$$
\begin{array}{r}
v_{r}=c k J_{1}(\beta r) \exp (i k z-i \sigma t) \\
v_{z}=i c \beta J_{0}(\beta r) \exp (i k z-i \sigma t)
\end{array}
$$

Dispersion relation [Glaberson, Johnson and Ostermeier (1974), Henderson and Barenghi (2004)]

$$
\frac{\sigma}{\Omega}=\frac{-i \alpha\left(\beta^{2}+2 k^{2} \eta_{2}\right) \pm i \sqrt{\alpha^{2} \beta^{4}-4\left(1-\alpha^{\prime}\right)^{2} k^{2}\left(\beta^{2}+k^{2}\right) \eta_{1} \eta_{2}}}{\beta^{2}+k^{2}}
$$

where $\eta_{1}=1+\nu k^{2} / 2 \Omega$ and $\eta_{2}=1+\nu\left(\beta^{2}+k^{2}\right) / 2 \Omega$.

In order to understand the dispersion, we study special cases.

1) $\beta \rightarrow 0$, corresponds to a short cylinder
$\Rightarrow 2$ Kelvin wave modes (Hall 1958)

$$
k_{ \pm}=i \sqrt{\frac{2 \Omega \pm \sigma}{\nu}}
$$

and an inertial mode

$$
k_{\mathrm{i}}=0
$$

At low frequency ($\sigma \ll \Omega$) these give just the columnar motion because Kelvin waves are evanescent. No twisted state.

2) $k \rightarrow 0$, corresponds to a long cylinder
$\Rightarrow 2$ modes

The point $k=\sigma=0$ corresponds to uniform twist!

At finite k the twist obeys diffusion equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}=D \frac{\partial^{2} f}{\partial z^{2}}, \quad D=\frac{1}{d}\left(\frac{2 \Omega}{\beta^{2}}+\nu\right) \tag{5}
\end{equation*}
$$

where $f(z, t)=v_{r}$ or v_{z}.

Summary of two opposite limits

Long cylinder

- twisted vortices

Parallel plates

- columnar vortices

2) Generation of twisted vortex states

- superfluid in a cylinder
- cylinder rotating at $\Omega>\Omega_{c}$, but
no vortices in the initial state
- generate vortices at one place

- vortices propagate along the cylinder and
- vortex ends rotate around the cylinder axis

Why vortex ends rotate?

Normal component rotates at $\boldsymbol{v}_{n}=\boldsymbol{\Omega} \times \boldsymbol{r}$.

Superfluid component: vortex lines move with the average superfluid velocity

1) vortex state: $\boldsymbol{v}_{s} \approx \Omega \times r$
\Rightarrow vortex lattice rotates at angular velocity Ω
2) no vortices: $\boldsymbol{v}_{s}=0$
3) vortex front
average superfluid angular velocity $\Omega / 2 \Rightarrow$ vortex ends rotate at angular velocity $\Omega / 2$
\Rightarrow propagating vortex ends lag behind

Numerical simulation

Vortex line velocity (2)

$$
\boldsymbol{v}_{L}=\boldsymbol{v}_{s}+\alpha^{\prime} \hat{\boldsymbol{l}} \times\left[\left(\boldsymbol{v}_{n}-\boldsymbol{v}_{s}\right) \times \hat{\boldsymbol{l}}\right]+\alpha \hat{\boldsymbol{l}} \times\left(\boldsymbol{v}_{n}-\boldsymbol{v}_{s}\right) .
$$

\boldsymbol{v}_{s} is calculated from Biot-Savart integral. (Risto Hänninen)

The front and the twisted state is confirmed by numerical calculation
movie

movie

Main observations

- the twisted state has axial current.
- individual vortices become unstable to generate Kelvin waves at large axial current
- the vortices glide at the bottom plate
\Rightarrow relaxation of the twist
- the relaxation is determined by the diffusion equation.

3) Experiment in superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$

Vortex state was generated as discussed above.

The axial velocity v_{z} affects the texture, which is seen by NMR.

Diffusion constant

$$
\begin{equation*}
D=\frac{1}{d}\left(\frac{2 \Omega}{\beta^{2}}+\nu\right) \propto \frac{1}{\text { mutual friction constant }} \tag{6}
\end{equation*}
$$

Conclusions

Twisted vortex state is a possible state in long rotating cylinders.

The twisted state can be generated by vortex injection.
The twisted state has been seen in superfluid ${ }^{3} \mathrm{He}-\mathrm{B}$.

Eltsov et al, Phys. Rev. Lett. 96, 215302 (2006)

