
Vortex Structures in Superfluids:
Examples in 3He

QFS2009, Northwestern,  Aug. 10, 2009

Erkki Thuneberg
University of Oulu



Oulu

Helsinki

picture: Nasa



Introduction to vortices

Multicomponent order parameter

Symmetry classification of vortices

Topological classification

Vortex sheet

Vortex core structures

Spin-current vortices

Spin-mass vortices

Summary of vortex structures in 3He

Content



Order parameter is a scalar
- 4He
- many superconductors Al, Nb, Pb, ...
- many condensates of dilute gases

Simple superfluids
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Vortex line
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Vortices in rotating superfluid

In equilibrium the average superfluid 
velocity has to be equal to the normal fluid 
velocity

 vn = Ω r 

 vs 
velocity

r

R

Line density  n
�

dl · vs = 2πRΩR = nκπR2

⇒ n =
2Ω
κ

.



Vortex lattice

Flux lines
in 

superconductors
(NbSe2, Ø. Fisher et al)

Vortex lines
in 4He

(Yarmchuk et al 1979)

Vortex lines
in BEC

(Abo-Shaeer et al 2001)

⇒ hexagonal lattice + boundary distortion
Are there other lattice structures?

- underlying crystal lattice 
→ different vortex lattice structures, or no periodicity
- more complicated order parameter



- mixture BEC: two species of atoms
- spinor BEC: atoms identical but in different hyperfine states
- “exotic” superconductors
- 3He

Multi-component order parameter
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Spin 1 condensate. Use basis |F = 1,mF �

ζ∗αζα = 1

�S� = ζ∗αSαβζβ

Two alternatives
1) Ferromagnetic state,                  . Characterized by direction of

2) Polar state,                 . Convenient representation in basis
 

|�S�| = 1 �S�

�S� = 0

Ψ =




Ψ1

Ψ0

Ψ−1



 =
√

neiφ




ζ1

ζ0

ζ−1





Ψ =
√

neiφ




dx

dy

dz




1√
2
(−|1, 1�+ |1,−1�)

i√
2
(|1, 1�+ |1,−1�)

|1, 0�

vs =
�
M

∇φ The variation of d and        give rise to spin currents �S�



Symmetries of periodic vortex lattices
in absence of crystal lattice effect

Bravais lattice space group material vortex name

hexagonal P6/mm�m� 4
He-II vortex line

s.c. metals flux line

3
He-B A-phase-core v.

dilute gas vortex line

square P4/nb�m� 3
He-A locked vortex 1 (LV1)

prim. rectang. Pb�a�n 3
He-A vortex sheet (VS)

cent. rectang. Cm�m�
2

3
He-B double-core v.

C2
� 3

He-A cont. unlocked v. (CUV)

3
He-A locked vortex 2

Cm� 3
He-A singular vortex (SV)



Basis for symmetry classification

interactions confining potential and its kinetic energy (angular velocity Ω)

coordinates ri, momenta pi=mivi

H =
�

i

p
2
i

2mi
+ V +

1
2
IΩ2 + U

require define

⇒

→ periodic solutions neglect

Ltot =
�

i

ri × pi + IΩ = constant

charged superfluid pi → pi − eiA(ri) A(r) =
1
2
B × r

H =
�

i

1
2mi

[pi −mivn(ri)]2 + V − 1
2

�

i

mivn(ri)2 + U

vn(r) = Ω× r
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1
2mi

[pi −mivn(ri)− eiA(ri)]2 + V − 1
2

�

i

mivn(ri)2 + U

(Equivalence of  magnetic field and rotation ⇒ London moment)



Space groups for vortex lattices
There are 230 space groups for 3D crystals

vortex lattice: continuous translation symmetry along the rotation axis (?)
- space groups can still be used, but cubic groups are not possible

Why not 17 plane groups? 
- they do not contain operation 4 above
- do not allow breaking of the continuous translation symmetry along rotation axis 

Basic symmetry operations for vortex lattices: 
1) translations
2) rotations around Ω (1,2,3,4,6)
3) rotation by π around axis ⊥ Ω  combined by time inversion (2’)
4) reflection in plane ⊥ Ω (m)
5) reflection in plane containing Ω combined by time inversion (m’)

Why not 1651 magnetic space groups? 
- too complicated since time inversion appears trivially  

(Karimäki & Thuneberg, PRB 1999)



An example: P4/nbʼmʼ

The dashes show projection of l 
vector on the plane (arrow 
heads are removed for clarity)
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rotation axes 4z at two circular points 
glide plane nz with translation along diagonal

l points up at the circular points 
and down at the hyperbolic 
points

Continuous locked vortex in 
3He-A (Fujita, Nakahara, Ohmi & 
Tsuneto 1978)

equivalent points of the Bravais 
lattice 



Second example: C2ʼ

Centered rectangular lattice

Continuous unlocked vortex in 3He-A
(Volovik & Seppälä 1983)

l field:



Topological classification
In contrast to symmetry classification, topological classification depends on the type 
of the order parameter

κ =
�

dl · vs =
�
M

�
dl · ∇ϕ = n

h

M
.

Simple superfluids: circulation around a vortex

Many-component superfluids: additional topological invariants

νl =
1
4π

�
dx dy l̂ · ∂ l̂

∂x
× ∂ l̂

∂y

counts how many times l sweeps the unit sphere



Order parameter of 3He
3He is spin 1/2 fermion, fermions form pairs in state S=1, L=1.
Such a Cooper pair state has macroscopic occupation, similar as in Bose condensation

(- + ) 

( + )

i( + ) 

Spin wave functions (S = 1)

Orbital wave functions (L = 1)

x y

z

Sx = 0:

Sy = 0:

Sz = 0:

Ψxx Ψxy Ψxz

Ψyx Ψyy Ψyz

Ψzx Ψzy Ψzz

order parameter

In the A phase energetics limits the order parameter to the form

m

( +i )( + )

orbital wave function spin wave function

d

n

ll ll

Ψij(r) is the wave 
function for the center of 
mass of a Cooper pair.

Ψµj = ∆d̂µ(m̂j + in̂j)



Superfluid velocity in 3He-A

m

( +i )( + )

orbital wave function spin wave function

d

n

ll ll

eiφ(m̂ + in̂) = (cos φ + i sinφ)(m̂ + in̂)
= (m̂ cos φ− n̂ sinφ) + i(m̂ sinφ + n̂ cos φ)

A phase factor eiφ corresponds to rotation of m̂ and n̂ around l̂:

Superfluid velocity

vs =
�
M

∇φ =
�
M

�

j

m̂j∇n̂j .

⇒ vs is coupled to the orientation of the triad m̂, n̂, l̂

⇒ Mermin-Ho relation n = 2νl

⇒ The structures presented above are vortices, although the order parameter 
vanishes nowhere



Vortex sheet

Vortex sheets were discussed before vortex lines: 
Onsager 1948, Landau & Lifshitz 1955

Vortex sheets are unstable in simple superfluids

Vortex sheet is a tangential discontinuity in superfluid velocity

Vortex sheets can be stabilized in multi-component superfluids:
If there are two degenerate but distinct states, there is a domain wall between these.
This domain wall may trap vortices and thus becomes vortex sheet

Example in 3He-A

fD = − 1
2λD(d̂ · l̂)2

or               ⇒

d dd d

domain wall
'soliton'

ll ll llll

l field:

d ≈constant



Structure of the sheet
Space group Pb’a’n



Sheet configuration
The equilibrium configuration is determined by 
the minimum of 

velocity

 v
n
 = Ω × r

 v
s
 

radius
b

F =
�

d3r 1
2ρs(vn − vs)2 + σA

b =
�

3σ

ρsΩ2

�1/3

⇒ The equilibrium distance b between sheets

⇒ The total area of the sheet

A ∝ 1
b
∝ Ω2/3

0 1.0 2.0

rotation  velocity (rad/s)
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M

R
 p
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ea Vortex-
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vortex
lines

Connection lines with the side wall allow the 
vortex sheet to grow and shrink when angular 
velocity changes. 



Playing with the sheet
Minimum energy state in a rectangular container
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Stability of one concentric vortes sheet in a 
cylinder
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Superfluids with well defined phase
In the case the phase is uniquely defined, the vorticity has line structure, similar to simple superfluids 

The structure of the vortex core can be more complicated than in simple superfluids

Example: 3He-B
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The douple-core structure (left)

The double-core can be interpreted 
as two half-quantum vortices



Double core structure in an orifice
The double core structure in an orifice can explain the π state observed in 3He-B Josephson 
junctions
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half-quantum ( ) vortex

half-quantum ( ) vortex
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∆φ

Current



Spin-current vortices
The vortices discussed above are characterized by mass (or electric) current.

In many-component systems, the variation of spin variables gives rise to spin current.

⇒  Spin-current vortex 

Example: 3He-B

Ψ = ∆ exp(iφ)




Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz




where the rotation matrix R(n, θ) is 
paramterized by an angle θ and 
rotation axis n

Symmetry U(1)× SO3. Homotopy groups π(U(1)) = Z, π(SO3) = Z2.

spin vortex Warning: no expermental evidence of 
this vortex yet

jspin(r)

r

Spin current is not conserved



Combined spin and mass vortex, case 1

The spin-mass vortex is stable against dissociation:

(mass) vortex spin vortex spin-mass vortex

→

Fsm < Fs + Fm

θ = 104˚
θ ≠ 104˚

spin vortex line
planar ta

il

≈ 10 µm

≈ 0.01 µm
vn — vs

SMV pair

MV

SMV

counterflow
region

Effect of non-conservation of spin current:



Combined spin and mass vortex, case 2
Assume an order parameter where phase is not uniquely defined 

Example: half quantum vortex in 3He-A

It is possible to have a line object where part of the change of the order 
parameter around the line comes from spin and part from the phase  

Ψµj = ∆d̂µ(m̂j + in̂j)

The original order parameter is restored by combined operation:
1) turn m and n around l by angle π (meaning phase change by π) 
2) turn d by angle π

Half quantum vortex not favored in bulk 3He-A, but may be observed in a slab geometry 
(Mizusaki)

1/3 quantum vortex may appear in some spinor condensates (Machida)

m m
n n
d d



Summary of vortex structures in 3He-A

hard core
soft core

Continuous unlocked vortex (CUV)Vortex sheet (VS)

Singular vortex (SV)

rotation
velocity
(rad/s)

magnetic
field (mT)

l field:

0.50.250

2

0
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8

Locked vortex 1 (LV1) Locked vortex 3 (LV3)

x

y

z

d ≈constant

d ≈constant

d ≈constant

l field:

l field:

l = d field: l = d field:

Vortices in bulk liquid
- are these all at present 
experimental conditions?
- high rotation speeds (Kita)
- no proper calculation of the 
singular vortex

Vortices in restricted 
geometry 
- various distorted forms of 
the bulk structures
- half quantum vortex? 
- other structures?



Summary of vortex structures in 3He-B
Equilibrium vortices in bulk liquid:
some observations suggest a third 
structure 
- hysteresis at the vortex-core 
transition (Hall et al) 
- gyroscopic experiments see similar 
but not same transition?
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Summary of vortex structures in dilute gases



Summary
Various vortex structures are possible for many-component order-parameter superfluids

These were illustrated by examples in superfluid 3He



Theory hierarchy of superfluid 3He

1 m

1 mm

1 µm

1 nm

1 pm

atom

nucleus

density, 
superfluid density, 
stiffness parameters, 
viscosity parameters

density, Fermi velocity, 
interaction parameters ,Tc, ...

spin = 1/2 
charge = 2 e 
mass = 5.01 10-27 kg 
gyromagnetic ratio = 2.04 108 1/Ts 

quantum theory

Ginzburg-Landau theory

quasiclassical theory

hydrodynamic theory

α', βi, K, γ



Vortex experiments in superfluid 3He
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