LT-26, Beijing, Aug. 15, 2011

Pendulum in a Fermi liquid

Erkki Thuneberg Timo Virtanen

University of Oulu Finland

Purpose

- to explain vibrating wire measurements in ³He-⁴He mixtures
- to understand Fermi liquid theory

Immerse a pendulum in a liquid

The liquid is dragged into motion. The increased effective mass reduces the oscillation frequency.

The liquid can act like an elastic medium, increasing the oscillation frequency.

Content

brief introduction to Fermi liquid theory

explanation of the Landau force

Fermi–liquid equations for ³He–⁴He mixtures

calculation of the response to an oscillating cylinder

comparison to experiments

further consequences

Fermi liquid theory

The problem of many interacting particles

Lev Landau developed a model how an interacting Fermi-system can behave (1957)

Instead of strongly interacting particles, there are quasiparticles, that interact only weakly

Fermi liquid interactions

Why interactions?

Suppose giving all particles an extra velocity $oldsymbol{v}$

$$\epsilon_{\boldsymbol{p}} = \frac{p^2}{2(m_F + \delta m)} + \delta \epsilon_{\hat{\boldsymbol{p}}}$$

$$\delta \epsilon_{\hat{\boldsymbol{p}}} = \int d^3 p' f(\boldsymbol{p}, \boldsymbol{p}') (n_{\boldsymbol{p}} - n_{\boldsymbol{p}}^{(0)})$$

quasiparticle distribution function

The interaction $\delta \varepsilon$ shifts the energies just to compensate δm when the whole Fermi sphere is shifted

The interaction is parametrized by $F_0^s, F_1^s, F_2^s, \ldots, F_0^a, F_1^a, F_2^a, \ldots$

Effect of Fermi liquid interactions

Assume a beam of quasiparticles

study a quasiparticle trajectory crossing the beam

the beam causes a potential on the crossing trajectory

a stationary quasiparticle beam ⇒ negligible effect at the Fermi level

time-dependent quasiparticle beam ⇒ radiation/absorption of quasiparticles

Elasticity/inertia of Fermi liquid

a moving object generates a beam of quasiparticles

the beam causes a potential on incoming quasiparticles

assume F_0 most important interaction

 $\delta \dot{\epsilon} \propto F_0 \dot{u}$

a) pure ³He: $F_0 > 0$

 \Rightarrow more particles hit the pendulum in front \Rightarrow increased inertia

b) ${}^{3}\text{He}{-}^{4}\text{He}$ mixture : $F_0 < 0$ \Rightarrow less particles hit the pendulum in front

 \Rightarrow elasticity of the liquid

"Landau force"

Fermi-liquid theory for fermion-boson mixture (3He-4He mixture)

Khalatnikov (1969)

quasiparticle momentum

 $\boldsymbol{p} = (m_F + \delta m_B + \delta m_F) \boldsymbol{v}$

$$\delta \epsilon_{\hat{\boldsymbol{p}}}(\boldsymbol{r},t) = (1+\alpha)\delta\mu_{\mathrm{B}}(\boldsymbol{r},t) + Dp_{\mathrm{F}}\hat{\boldsymbol{p}} \cdot \boldsymbol{v}_{s}(\boldsymbol{r},t) + \sum_{l=0}^{\infty} F_{l} \langle P_{l}(\hat{\boldsymbol{p}} \cdot \hat{\boldsymbol{p}}')\phi_{\hat{\boldsymbol{p}}'}(\boldsymbol{r},t) \rangle_{\hat{\boldsymbol{p}}'},$$
$$\phi_{\hat{\boldsymbol{p}}} = \int [n_{p\hat{\boldsymbol{p}}} - n_{p}^{(0)}]v_{\mathrm{F}}dp$$

Calculation

oscillating cylinder in ³He-⁴He mixture

$$\delta\epsilon_{\hat{\boldsymbol{p}}}(\boldsymbol{r},t) = (1+\alpha)\delta\mu_{\mathrm{B}}(\boldsymbol{r},t) + Dp_{\mathrm{F}}\hat{\boldsymbol{p}}\cdot\boldsymbol{v}_{s}(\boldsymbol{r},t) + \sum_{l=0}^{\infty}F_{l}\langle P_{l}(\hat{\boldsymbol{p}}\cdot\hat{\boldsymbol{p}}')\phi_{\hat{\boldsymbol{p}}'}(\boldsymbol{r},t)\rangle_{\hat{\boldsymbol{p}}'},$$

kinetic equation

$$\frac{\partial \phi_{\hat{\boldsymbol{p}}}}{\partial t} + v_{\mathrm{F}} \hat{\boldsymbol{p}} \cdot \boldsymbol{\nabla} (\phi_{\hat{\boldsymbol{p}}} + \delta \epsilon_{\hat{\boldsymbol{p}}}) = I$$

relaxation time approximation for *I* boundary conditions Laplace equation to calculate v_s and μ_B momentum flux tensor to calculate forces

Results

F = Zu \uparrow cylinder velocity force on the liquid

green: cylinder (radius *a*) in unlimited fluid blue: cylinder in a slab of thickness 16*a* dotted: hydrodynamic approximation Z = Z' + iZ''

1: decoupling of fermions
2: decoupling of bosons bound to

quasiparticles

3: Landau force

4: force caused by quasiparticles reflected from slab walls

Vibrating wire experiment

J. Martikainen, J. Tuoriniemi, T. Knuuttila, and G. Pickett (2002)

theory:

Fermi-liquid parameters taken from independent measurements, diffusive bound conditions

Further studies

damped second sound resonances at higher frequencies and in larger containers

Further studies 2

liquid inside a torsionally oscillating cylinder

The limit $\Omega \rightarrow \infty$ corresponds to a transverse oscillating plane, Bekarevich&Khalatnikov (1961), Flowers&Richardson (1978)

Summary

There is a force on a macroscopic object caused by the Fermi-liquid interactions. It can be interpreted as elasticity of the Fermi liquid.

The liquid force on a oscillating cylinder is calculated and compared with experiments in ³He-⁴He mixtures.

More on Poster 15P-A032 (today, not in program booklet)

Further reading: PRL 106, 055301 (2011); PRB 83, 245137 (2011); PRB 83, 224521 (2011)